Skip to main content

Article 690.47: Grounding Electrode System












This Article is extracted from Mike Holt’s Illustrated Guide to Understanding NEC® Requirements for Solar Photovoltaic Systems.



Understanding NEC Requirements for Solar Photovoltaic Systems, Based on the 2011 NEC


Click here to buy a copy or read more about it.   



  





*Please note in the follwing extraction that blue underlined text indicates a 2014 NEC change.





Section 690.47 – Grounding Electrode System

(A) Alternating-Current PV System Grounding Requirements. For ac PV systems, a grounding electrode system must be provided in accordance with 250.50 through 250.60, with the ac grounding electrode conductor installed in accordance with 250.64.Figure 690–109

Im,age


Figure 690–109

(B) Direct-Current PV System Grounding Requirements. For dc PV systems, a grounding electrode system in accordance with 250.166 for grounded systems, or 250.169 for ungrounded systems, must be provided. Figure 690–110

Image3

Figure 690–110

A common dc grounding-electrode conductor can service multiple inverters. Section 250.166 is used to size the common grounding electrode and the tap conductors. The tap conductors must be connected to the common grounding-electrode conductor by exothermic welding or with connectors listed as grounding and bonding equipment.

The ac grounding electrode system can be used for equipment grounding of inverters and for the ground-fault detection reference for un-grounded PV systems.

(C) PV Grounded System with Alternating-Current Power System. Grounded PV systems constructed of dc modules must have the dc system grounded by one of the following methods:

(1) Separate dc Electrode. A grounding electrode conductor run from the marked dc GEC point at the inverter to the separate dc grounding electrode sized no smaller than the largest ungrounded dc conductor, but no smaller than 8 AWG [250.166(B)]. The dc grounding electrode must be bonded to the ac grounding electrode with a bonding jumper sized to the larger of the dc grounding electrode conductor [250.166] or ac grounding electrode conductor [250.66]. Figure 690–111

Image4

Figure 690–111

(2) Alternating-Current Grounding Electrode. A grounding electrode conductor sized in accordance with 250.166 must be run from the marked dc GEC point at the inverter to the ac grounding electrode. Figure 690–112

Image3

Figure 690–112

Where an ac grounding electrode isn’t accessible, the dc grounding electrode conductor must terminate to the ac grounding electrode conductor with a connector listed as grounding and bonding equipment. 690–113

Image2

Figure 690–113

(3) Combination ac Equipment Grounding Conductor/dc Grounding Electrode Conductor. For grounded PV Systems, the ac equipment grounding conductor sized to the larger of 250.122 or 250.166 can serve as both the ac circuit equipment grounding conductor and dc grounding electrode conductor. Figure 690–114

Image3

Figure 690–114

Author’s Comment:
  •  The ac equipment grounding conductor is sized in accordance with 250.122 based on the rating of the ac circuit overcurrent protection device; the dc grounding electrode conductor is sized no smaller than 8 AWG and no smaller than the dc circuit conductors [250.166(B)].

Question: What size EGC/GEC is required for a grounded PV system, where the inverter dc input circuit conductors are 14 AWG and the inverter ac output circuit conductors are 10 AWG protected by a 30A breaker? Figure 690–115

Answer: Table 250.122 requires the ac EGC to be sized no smaller than 10 AWG, and 250.166(B) requires the dc grounding electrode conductor to be no smaller than the largest dc circuit conductors, but no smaller than 8 AWG. In this case, the combined EGC/GEC must be no smaller than 8 AWG.
Image3

Figure 690–115

For ungrounded systems, the ac equipment grounding conductor sized no smaller than required by 250.122 based on the rating of the ac circuit overcurrent protection device can serve as both the ac circuit equipment grounding conductor and dc grounding electrode conductor.Figure 690–116

Image3

Figure 690–116

(D) Auxiliary Electrode for Array. A dc grounding electrode conductor from the array structure sized in accordance with 250.166 must be connected to a grounding electrode that complies with 250.52 and 250.54.

The metal structure of a ground- or pole-mounted PV array can serve as the grounding electrode if it complies with 250.52.

Roof-mounted PV arrays can use the metal frame of a building or structure as the electrode if it meets 250.52(A)(2). Figure 690–117

Image3

Figure 690–117

Ex No. 1: An array grounding electrode(s) isn’t required where the load served by the array is integral with the array.
Ex No. 2: An additional array grounding electrode(s) isn’t required if located within 6 ft of the premises wiring electrode.
Author’s Comment:
  • Auxiliary electrodes have no NEC requirements since they serve no useful purpose relating to electrical safety, yet are permitted. If an auxiliary electrode is installed, it isn’t required to be bonded to the building grounding electrode system, required to have the grounding conductor sized to 250.66, or to comply with the 25-ohm requirement of 250.53(A)(2) Ex [250.54].

CAUTION: An auxiliary electrode typically serves no useful purpose, and in some cases it may actually cause equipment failures by providing a path for lightning to travel through electronic equipment. Figure 690–118

Image3

Figure 690–118

2014 Change Analysis: The requirements for grounding the PV array were included in the 2008 Code, but disappeared in the 2011 edition. Due to the fact that there was no technical substantiation in either the report on proposals or the report on comments to remove it from the 2011 edition, it was inserted back into the 2014 Code without substantiation.


This Article is extracted from Mike Holt’s Illustrated Guide to Understanding NEC® Requirements for Solar Photovoltaic Systems based on the 2014 NEC®. 



Understanding NEC Requirements for Solar Photovoltaic Systems, Based on the 2011 NEC

Comments

Popular posts from this blog

Texas Electricians- The End is Near- How to Avoid Getting Lost in the Shuffle

How to Avoid Getting Lost in the Shuffle If you haven't heard that the end of the 2011 NEC Exams is coming up, then you've been living under a rock or working way too hard. That's right guys, if you have applied to take your exam but have not yet passed or even taken the exam, you have a deadline.  As of September 1, 2014, the TDLR will only accept and recognize the 2014 version of the  National Electrical Code ®  on the field and in the testing site.  The exam will be based on the 2014 version of the book, you will still be allowed to bring in your 2011 but we do not recommend that.  If you already have your 2014, you must have already noticed that there a great deal of updates on the code.  Your first clue should be the number of pages, the book has gotten BIGGER! We have the last few seminars already lined up, there is limited seating and I strongly recommend that you reserve a seat.  Alternatively, if you don't have time for a seminar and...

Formulas to study for the electrical test

The formulas to study for the electrical test range from common knowledge (those you use on the field) to complicated.  Let’s go over the commonly needed formulas that you will need to use for the PSI electrical test. To download our Electrical Formulas Cheat Sheet, click here . Includes motor calculation steps, box fill, ranges, transformers, conduit fill, PIE, EIR, and more! If your testing center allows short notes in the code book, write these formulas down. This way you don’t have to try to remember them during the test. Check your test provider’s website to see if they allow short notes in the book. For those who are not allowed to have written notes in the book, make yourself some flash cards and memorize these formulas. Formulas to Study for the Electrical Exam PEMDAS Even though PEMDAS is not an electrical formula, you must remember your order of operations. Don’t go through the trouble for learning these fo...